Exercises. Prove or disprove that the following functions are continuous (on their natural domain):

 1. $f(x) = \sin(x);$ 5. $f(x) = \frac{1}{x};$

 2. f(x) = k, where $k \in \mathbb{R};$ 6. $f(x) = \chi_{(0,\infty)}(x);$

 3. $f(x) = \sqrt{x};$ 7. $f(x) = \chi_{\mathbb{Q}}(x);$

 4. f(x) = |x|; 8. $f(x) = x \cdot \chi_{\mathbb{Q}}(x).$

Solutions. Note that the following proofs are written as rough work; you should rewrite these in an exam/assignment with your choice of δ at the top, before you rearrange |f(x) - f(c)|.

1. Let $\varepsilon > 0$. Then, if $|x - c| < \delta$, we have

$$|f(x) - f(c)| = |\sin(x) - \sin(c)|$$

$$= \left| 2\sin\left(\frac{x-c}{2}\right)\cos\left(\frac{x+c}{2}\right) \right|$$

$$\leq \left| 2\sin\left(\frac{x-c}{2}\right) \right|$$

$$\leq \left| 2\left(\frac{x-c}{2}\right) \right|$$

$$= |x-c|$$

$$< \delta$$

Picking $\delta = \varepsilon$, we have

So this function is continuous. (In an exam, put "Choose $\delta = \varepsilon$ " at the top, after "Let $\varepsilon > 0$ ", but you should use this kind of rough working to inform your choice of δ .)

2. Let $\varepsilon > 0$. Then,

$$|f(x) - f(c)| = |k - k|$$

= 0
< ε

So this function is continuous. (Note that the value of δ is irrelevant here, so just put "Choose $\delta = 1$ " at the top, or any other arbitrary positive value.)

3. Let $\varepsilon > 0$. Then, if $|x - c| < \delta$, we have

$$|f(x) - f(c)| = |\sqrt{x} - \sqrt{c}|$$
$$= \left|\frac{x - c}{\sqrt{x} + \sqrt{c}}\right|$$
$$= \frac{|x - c|}{|\sqrt{x} + \sqrt{c}|}$$
$$< \frac{\delta}{|\sqrt{x} + \sqrt{c}|}$$

Observe that $|\sqrt{x} + \sqrt{c}| \ge |\sqrt{c}|$, so

so if $\delta = \varepsilon \sqrt{c}$,

 $< \varepsilon$

 $\leq \frac{\delta}{|\sqrt{c}|}$

However, we divided by \sqrt{c} in the above, so this proof is only valid for $c \neq 0$. For c = 0, whenever $|x - c| = |x| < \delta$, we have

$$|f(x) - f(c)| = |\sqrt{x} - \sqrt{0}|$$
$$= |\sqrt{x}|$$
$$= \sqrt{|x|}$$
$$< \sqrt{\delta}$$

Picking $\delta = \varepsilon^2$, we have

 $= \varepsilon$

which completes the proof.

4. Let $\varepsilon > 0$. Then, if $|x - c| < \delta$, we have

$$|f(x) - f(c)| = ||x| - |c||$$
$$\leq |x - c|$$
$$< \delta$$

Picking $\delta = \varepsilon$, we have

$$= \varepsilon$$

5. Let $\varepsilon > 0$. Then, if $|x - c| < \delta$, we have

$$|f(x) - f(c)| = \left|\frac{1}{x} - \frac{1}{c}\right|$$
$$= \left|\frac{x - c}{xc}\right|$$
$$< \frac{\delta}{|xc|}$$

If we had $\delta = \varepsilon |xc|$, we would be done; however, δ cannot depend on x, so we aim to eliminate x from this expression.

If $\delta \leq \frac{|c|}{2}$, then

$$\begin{aligned} |x-c| &< \frac{|c|}{2} \\ |x|-|c| \Big| &< \frac{|c|}{2} \end{aligned}$$

so by the interval property,

$$|c| - \frac{|c|}{2} < |x| < |c| + \frac{|c|}{2}$$

 $\frac{|c|}{2} < |x| < \frac{3|c|}{2}$

Then,

$$\begin{aligned} f(x) - f(c)| &< \frac{\delta}{|x||c|} \\ &\leq \frac{\delta}{\left|\frac{|c|}{2}\right||c|} \\ &= \frac{2\delta}{|c|^2} \end{aligned}$$

Now, if $\delta \leq \frac{|c|^2}{2}$, we have

 $\leq \varepsilon$

However, we earlier required that $|x - c| < \frac{|c|}{2}$, so we need δ to simultaneously satisfy $\delta \leq \frac{|c|}{2}$ and $\delta \leq \frac{|c|^2}{2}$. So let $\delta = \min\left(\frac{|c|}{2}, \frac{|c|^2}{2}\right)$.

6. Consider the sequence $(x_n)_{n=1}^{\infty} \subseteq \mathbb{Q}$ defined by $x_n \coloneqq \frac{1}{n}$, converging to the point $c \coloneqq 0$. Then,

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 1$$
$$= 1$$
$$\neq 0$$
$$= f(c)$$

so $f = \chi_{(0,\infty)}$ is not (sequentially) continuous at 0. At every other point, f is constant and is continuous (proof similar to Q1).

7. Let $\varepsilon = \frac{1}{2}$, let $\delta > 0$, and recall that any interval in \mathbb{R} of positive length contains both rational and irrational numbers.

Let $c \in \mathbb{Q}$ and consider the interval $I_{\delta} = (c - \delta, c + \delta)$. There exists an irrational $x \in I_{\delta}$ as I_{δ} is has length $2\delta > 0$. By construction, $|x - c| < \delta$. Then,

$$|f(x) - f(c)| = |1 - 0|$$

= 1
$$\not\leq \frac{1}{2}$$

= ε

The proof for the case $c \in \mathbb{R} \setminus \mathbb{Q}$ is symmetric.

8. Let c = 0, $\varepsilon > 0$, and $\delta = \varepsilon$, and suppose that $|x - c| = |x| < \delta$. If $x \in \mathbb{Q}$, then

$$|f(x) - f(c)| = |f(x)|$$
$$= |x|$$
$$< \delta$$
$$= \varepsilon$$

If $x \in \mathbb{R} \setminus \mathbb{Q}$, then

$$|f(x) - f(c)| = |f(x)|$$

reeee \mid 3

$$= |0|$$

 $< \varepsilon$

In either case, $|f(x) - f(c)| < \varepsilon$, so f is continuous at 0.

Let $c \in \mathbb{Q} \setminus \{0\}$, and consider the sequence defined by $(x_n)_{n=1}^{\infty} \subseteq \mathbb{R} \setminus \mathbb{Q}$ defined by $x_n \coloneqq c + \frac{\sqrt{2}}{n}$, that converges to the point c. Then,

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 0$$
$$= 0$$

Then, we have $f(c) = c \neq 0$, so f is discontinuous at all points $c \in \mathbb{Q}$.

If $c \in \mathbb{R} \setminus \mathbb{Q}$, then instead consider the sequence $(x_n)_{n=1}^{\infty} \subseteq \mathbb{Q}$ defined by $x_n \coloneqq \frac{\lfloor c \cdot 10^n \rfloor}{10^n}$ (or alternatively, appeal to Example sheet 2, Q1 to non-constructively generate such a sequence), that converges to the point c. Then,

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n$$
$$= c$$
$$\neq 0$$
$$= f(c)$$

So f is discontinuous at all points $c \in \mathbb{R} \setminus \mathbb{Q}$.

Example. Prove or disprove that the following series converge:

1.
$$\sum \frac{1}{n}$$
;
2. $\sum \frac{1}{n^2}$;
3. $\sum \frac{(-1)^n}{\sqrt{n}}$;
4. $\sum \frac{n^2}{n!}$;
5. $\sum \frac{\sin(n)}{n}$;
6. $\sum \frac{\sin(n)}{n^2}$;
7. $\sum \left(\frac{1}{n} - \frac{1}{n+1}\right)$;
8. $\sum \frac{2^n + 3^n}{5^n}$;
9. $\sum \frac{\cos(\pi n)}{n^2}$;
10. $\sum \frac{n^n}{(n!)^2}$.